صفحه محصول - مقاله تاریخچه هندسه

مقاله تاریخچه هندسه (docx) 9 صفحه


دسته بندی : تحقیق

نوع فایل : Word (.docx) ( قابل ویرایش و آماده پرینت )

تعداد صفحات: 9 صفحه

قسمتی از متن Word (.docx) :

تاریخچه هندسه واژه انگلیسی Geometry ( هندسه ) از زبان یونانی ریشه گرفته است. این کلمه از دو کلمه «جئو»ٍ به معنای زمین و «متری» به معنای اندازه گیری تشکیل شده است.بنابراین هندسه اندازه گیری زمین است. مصریان اولیه نخستین کسانی بودند که اصول هندسه را کشف کردند. هر سال رودخانة نیل طغیان نموده و نواحی اطراف رودخانه راسیل فرا می‌گرفت. این عمل تمام علایم مرزی میان تقسیمات مختلف را از بین می‌برد و لازم می‌شد دوباره هر کس زمین خود را اندازه‌گیری و مرزبندی نماید. آنها روشی از علامت‌گذاری زمین‌ها با کمک پایه‌ها و طناب‌ها اختراع کردند. آنها پایه‌‌ای را در نقطه‌ای مناسب در زمین فرو می‌کردند، پایه دیگری در جایی دیگر نصب می‌شد و دو پایه توسط طنابی که مرز را مشخص می‌ساخت به یکدیگر متصل می‌‌شدند.با دو پایه دیگر زمین محصور شده ، محلی برای کشت یا ساختمان سازی‌ می‌گشت. با برآمدن یونانیان اطلاعات ریاضی قدم به مرحله ای علمی گذاشت.در آغاز تمام اصول هندسی ابتدایی بود. اما در سال 600 قبل از میلاد مسیح ، یک آموزگار یونانی به نام تالس، اصول هندسی را از لحاظ علمی ثابت کرد. تالس‌ دلایل ثبوت برخی از فرضیه‌ها را کشف کرد و آغازگر هندسة تشریحی بود. اما دانشمندی به نام اقلیدس که در اسکندریه زندگی‌ می‌کرد ، هندسه را به صورت یک علم بیان نمود. وی حدود سال 300 قبل از میلاد مسیح ، تمام نتایج هندسی را که تا به حال شناخته بود ، گرد آورد و آنها را به طور منظم ، در یک مجموعة 13 جلدی قرار داد. این کتابها که اصول هندسه نام داشتند ، به مدت 2 هزار سال در سراسر دنیا برای مطالعه هندسه به کار می رفتند. براساس این قوانین ، هندسه اقلیدسی تکامل یافت. هر چه زمان می گذشت ، شاخه های دیگری از هندسه توسط ریاضیدانان مختلف ، توسعه می یافت. امروزه در بررسی علم هندسه انواع مختلف این علم را نظیر هندسة تحلیلی و مثلثات، هندسه غیر اقلیدسی و هندسه فضایی مطالعه می کنیم. خدمت بزرگی که یونانیان در پیشرفت ریاضیات انجام دادند این بود که آنان احکام ریاضی را به جای تجربه بر استدلال منطقی استوار کردند.قبل از اقلیدس، فیثاغورث( 572-500 ق.م ) و زنون ( 490 ق.م. ) نیز به پیشرفت علم ریاضی خدمت بسیار کرده بودند. در قرن دوم قبل از میلاد ریاضیدانی به نام هیپارک، مثلثات را اختراع کرد. وی نخستین کسی بود که تقسیم بندی معمولی بابلی ها را برای پیرامون دایره پذیرفت.به این معنی که دایره را به 360 درجه و درجه را به 60 دقیقه و دقیقه را به 60 قسمت برابر تقسیم نمود و جدولی براساس شعاع دایره به دست آورد که وترهای بعضی قوس‌ها را به دست می داد و این قدیمی ترین جدول مثلثاتی است که تاکنون شناخته شده است. بعد از آن دانشمندان هندی موجب پیشرفت علم ریاضی شدند. در قرن پنجم میلادی آپاستامبا، در قرن ششم ، آریاب هاتا ، در قرن هفتم ،براهماگوپتا و در قرن نهم ،بهاسکارا در پیشرفت علم ریاضی بسیار مؤثر بودند. هندسه تصويري : فرض کنید دو صفحه و در فضا داریم که لزوماً موازی یکدیگر نیستند. در این صورت، برای به دست آوردن تصویر مرکزی به روی از مرکز مفروض که در یا واقع نیست، می‌توان تصویر هر نقطه از را نقطه‌ای چون از تعریف کرد که و روی یک خط راست گذرنده از قرار داشته باشند. همچنین می‌توان تصویر موازی را به این طریق به دست آورد که خطهای تصویر کننده را موازی در نظر بگیریم. همین‌طور تصویر یک خط در واقع صفحه به روی خط دیگری چون در هم به صورت تصویر مرکزی از یک نقطه ، و هم به صورت تصویر موازی تعریف می‌شود. تبدیل یک شکل به شکل دیگر از طریق تصویر موازی یا مرکزی و یا به وسیله رشته‌ای متناهی از این تصویر کردنها، تبدیل تصویری نامیده می‌شود. هندسه تصویری صفحه یا خط عبارت از مجموعه آن گزاره‌های هندسی است که بر اثر تبدیلهای تصویری دلخواه شکلها تغییری در صدق آنها پدید نمی‌آید. در مقابل، هندسه متری به مجموعه‌ای از گزاره‌ها، راجعه به اندازه‌های شکلها، اطلاق می‌شود که فقط تحت حرکتهای صلب شکلها صادق می‌مانند.  ..........................تصور کردن از یک نقطه......................................................................تصویرگری موازی به بعضی از ویژگیهای تصویری فوراً می‌توان پی‌برد. تصویر هر نقطه، یک نقطه است. به علاوه، تصویر هر خط راست، یک خط راست است زیرا اگر خط واقع در به روی صفحه تصویر شود، تقاطع با صفحه گذرنده از و ، خط راست خواهد بود. اگر نقطه و خط راست ملازم هم باشند. آنگاه پس از هر عمل تصویر، نقطه متناظر و خط متناظر نیز ملازم هم خواهند بود. پس ملازمت یک نقطه و یک خط تحت گروه تصویری ناورداست. این واقعیت، پیامدهای ساده ولی مهمی دارد. اگر سه یا تعداد بیشتری نقطه همخط باشند، یعنی ملازم با یک خط راست باشند، تصویرهای آنها نیز همخط خواهند بود. همچنین اگر سه یا تعداد بیشتری خط راست همرس باشند یعنی ملازم با یک نقطه باشند، تصویرهای آنها نیز خطهای راست همرسی خواهند بود. در حالی که این ویژگیهای ساده – ملازمت،‌همخطی‌، و همرسی – ویژگیهای تصویری (یعنی ویژگیهای ناوردا تحت عمل تصویر) هستند، اندازه‌های طول و زاویه، و نسبتهای چنین اندازه‌هایی، عموماً بر اثر تصویر کردن تغییر می‌کنند. مثلثهای متساوی‌الساقین یا متساوی‌الاضلاع را می‌توان به مثلثهای مختلف‌الاضلاع تصویر کرد. پس اگر چه «مثلث» مفهومی متعلق به هندسه تصویری است، «مثلث متساوی‌الاضلاع» چنین نیست و فقط به هندسه متری تعلق دارد.

فایل های دیگر این دسته