صفحه محصول - پاورپوینت الگوریتم های ژنتیک 2

پاورپوینت الگوریتم های ژنتیک 2 (pptx) 27 اسلاید


دسته بندی : پاورپوینت

نوع فایل : PowerPoint (.pptx) ( قابل ویرایش و آماده پرینت )

تعداد اسلاید: 27 اسلاید

قسمتی از متن PowerPoint (.pptx) :

1 الگوریتم های ژنتیک 2 الگوریتم ژنتیک الگوریتم ژنتیک روش یادگیری بر پایه تکامل بیولوژیک است. این روش در سال 1970 توسط John Holland معرفی گردید این روشها با نام Evolutionary Algorithms نیز خوانده میشوند. 3 ایده کلی یک GA برای حل یک مسئله مجموعه بسیار بزرگی از راه حلهای ممکن ار تولید میکند. هر یک از این راه حلها با استفاده از یک “ تابع تناسب” مورد ارزیابی قرار میگیرد. آنگاه تعدادی از بهترین راه حلها باعث تولید راه حلهای جدیدی میشوند. که اینکار باعث تکامل راه حلها میگردد. بدین ترتیب فضای جستجو در جهتی تکامل پیدا میکند که به راه حل مطلوب برسد در صورت انتخاب صحیح پارامترها، این روش میتواند بسیار موثر عمل نماید. 4 فضای فرضیه الگوریتم ژنتیک بجای جستجوی فرضیه های general-to specific و یا simple to complex فرضیه ها ی جدید را با تغییر و ترکیب متوالی اجزا بهترین فرضیه های موجود بدست میاورد. در هرمرحله مجموعه ای از فرضیه ها که جمعیت (population) نامیده میشوند از طریق جایگزینی بخشی از جمعیت فعلی با فرزندانی که از بهترین فرضیه های موجود حاصل شده اند بدست میآید. 5 ویژگیها الگوریتم های ژنتیک در مسائلی که فضای جستجوی بزرگی داشته باشند میتواند بکار گرفته شود. همچنین در مسایلی با فضای فرضیه پیچیده که تاثیر اجرا آن در فرضیه کلی ناشناخته باشند میتوان از GA برای جستجو استفاده نمود. برای discrete optimizationبسیار مورد استفاده قرار میگیرد. الگوریتم های ژنتیک را میتوان براحتی بصورت موازی اجرا نمود از اینرو میتوان کامپیوترهای ارزان قیمت تری را بصورت موازی مورد استفاده قرار داد. امکان به تله افتادن این الگوریتم در مینیمم محلی کمتر از سایر روشهاست. از لحاظ محاسباتی پرهزینه هستند. تضمینی برای رسیدن به جواب بهینه وجود ندارد. 6 Parallelization of Genetic Programming در سال 1999 شرکت Genetic Programming Inc. یک کامپیوتر موازی با 1000 گره هر یک شامل کامپیوتر های P2, 350 MHZ برای پیاده سازی روش های ژنتیک را مورد استفاده قرار داد. 7 کاربر دها کاربرد الگوریتم های ژنتیک بسیار زیاد میباشد optimization, automatic programming, machine learning, economics, operations research, ecology, studies of evolution and learning, and social systems 8 زیر شاخه های EA روش های EA به دو نوع مرتبط به هم ولی مجزا دسته بندی میشوند: Genetic Algorithms (GAs) در این روش راه حل یک مسئله بصورت یک bit string نشان داده میشود. Genetic Programming (GP) این روش به تولید expression trees که در زبانهای برنامه نویسی مثل lisp مورد استفاده هستند میپردازد بدین ترتیب میتوان برنامه هائی ساخت که قابل اجرا باشند. 9 الگوریتم های ژنتیک روش متداول پیاده سازی الگوریتم ژنتیک بدین ترتیب است که: استخری از فرضیه ها که population نامیده میشود تولید وبطور متناوب با فرضیه های جدیدی جایگزین میگردد. در هر بار تکرارتمامی فرضیه ها با استفاده از یک تابع تناسب یا Fitness مورد ارزیابی قرار داده میشوند. آنگاه تعدادی از بهترین فرضیه ها با استفاده از یک تابع احتمال انتخاب شده و جمعیت جدید را تشکیل میدهند. تعدادی از این فرضیه های انتخاب شده به همان صورت مورد استفاده واقع شده و مابقی با استفاده از اپراتورهای ژنتیکی نظیر Crossover و Mutationبرای تولید فرزندان بکار میروند.

فایل های دیگر این دسته